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Instabilities of finite-amplitude water waves 

By JOHN W. McLEAN 
Fluid Mechanics Department, TRU’ Defense and Space Systems Group, 

Redondo Beach, California, CA 90278 

(Received 30 December 1980 and in revised form 13 May 1981) 

A numerical investigation of normal-mode perturbations of a finite-amplitude Stokes 
wave has revealed regions of instability lying near resonance curves given by the 
linear-dispersion relation. It is found that, forsmall amplitude, the dominant instability 
is two-dimensional (of Benjamin-Feir type) but, for larger amplitudes, the dominant 
instability becomes a three-dimensional perturbation. Results are compared with 
recent experimental observations of steep wave trains. 

1. Introduction 
The stability of a uniform train of deep-water waves has been the subject of many 

investigations. For weakly nonlinear waves, perturbation methods have shown that 
the wave train is unstable to modulational (long-wavelength) perturbations (Lighthill 
1965; Benjamin & Feir 1967). A numerical investigation (Longuet-Higgins 1978a) has 
extended these results to large-amplitude waves and finite-wavelength modulations, 
but the analysis was confined to perturbations having a wavelength that is a rational 
multiple of the unperturbed wave. All these studies dealt with two-dimensional 
perturbations. The effect of three-dimensional perturbations has been studied in two 
small-amplitude approximations, the nonlinear Schrijdinger equation (Zakharov 
1968), and the Zakharov equation (Crawford et al. 1981). The results based on the 
Zakharov equation indicate that, for small amplitude, bands of instability lie near 
resonance curves deduced from the linear-dispersion relation - Phillips’ ‘figure 8 ’ 
(Phillips 1960). 

In this paper, we give details of a numerical investigation of the stability of finite- 
amplitude deep-water waves to infinitesimal three-dimensional perturbations of 
arbitrary wavelength based on the inviscid water-wave equations, and extend the 
results described by McLean et al. (1981). The results of Benjamin & Feir (1967) and 
Crawford et al. (1981) are recovered when the unperturbed wave has small amplitude. 
For two-dimensional subharmonic perturbations of finite-amplitude waves, the result,s 
agree with those of Longuet-Higgins ( 1 9 7 8 ~ ) .  

The present investigation shows that the resonance given by Phillips’ ‘figure 8’  is 
only the first of a family of resonance conditions. The instability associated with the 
‘figure 8’ is the dominant one for small waves, but for sufficiently steep waves the 
instability associated with the next-order resonance becomes dominant. For the 
latter instability, the largest growth rates always occur for with fully three-dimensional 
perturbations of the basic wave train. These instabilities give rise to three-dimensional 
wave patterns in agreement with recent experimental results (Su 1981). 
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2. The governing equations 
We consider surface gravity waves on an inviscid, irrotational, incompressible fluid 

of great depth. In a frame of reference moving with constant speed C (which will be 
taken as the speed of the unperturbed wave), the basic equations are 

on z = r ;  9t+r+ac9:+9;+93 = ac2 
rt + 9,rx+ 9 Y V Y  - 9 2  = 0 

in which $(x, y, z, t )  is the velocity potential, z = ~ ( x ,  y, t )  is the free surface, and C is 
the phase speed of the unperturbed wave. Without loss of generality, the gravitational 
acceleration has been taken to be unity, and the unperturbed wave has wavelength 
h = 2n. These equations admit steady solutions of the form 

I m 

1 
7 = ?(x) = A, COSTU, 

m 

1 
$ = $(x,z)  = -Cx+zBB,sinnxenz, 

(3) 

where the Fourier coefficients A,, B, and the phase speed C are functions of the wave 
steepness h/A, where h is the crest-to-trough height. 

We consider the stability of these two-dimensional steady waves to an infinitesimal 
three-dimensional disturbance. Let 

it is assumed that 7’ < ?j and 9’ < 7. To first order in the perturbations we obtain 

We look for non-trivial solutions of (4) of the form 

I 
where p and q are arbitrary reel numbers. The physical disturbance corresponds to 
the real part of ( 5 ) .  The perturbation has period 2n/q in the spanwise (y) direction, 
but is not strictly periodic in the propagation (5) direct)ion unless p is rat’ional. 
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Substitution of (5) into (4) gives 

- W  - W  

m m 

W 

x b .  eijzee' Itq = a eW 5 
--m 

a 

for 0 < x < 2a, where [ 3 denotes [(p +j), + q2]. Once the unperturbed wave ?j, 3 has 
been calculated, the coefficients in (6) may be evaluated, yielding an eigenvalue 
problem for u with eigenvector {aj, bj} .  Instability corresponds to 3u =# 0, since u 
occurs in complex conjugate pairs, because the system described by (4) is real. 

For h/A = 0, the unperturbed wave is ?j = 0, $ = - x, C = 1. The eigenfunctions 
and eigenvalnes are 

1 (7) 
7; = e-icrnt eW+n) Z+QYI, 

o;, = - (P+n)+[(p++)2+q2l* l  

for each integer n. These eigenfunctions are merely infinitesimal waves with wave- 
vector k = (kz, k,) = ( p  + n, 9). The frequencies are un = - kx & lkli which corresponds 
to the linear dispersion relation in a frame of reference moving with speed 1. The 
choice of sign defines the propagation sense relative to the unperturbed wave. Note 
that there is a degeneracy in the choice of p since u,@, q)  = un+,@- 1, q). This 
degeneracy is artificial since the corresponding eigenfunctions are physically the 
same,? and is an artifact of the choice of the representation (5 ) .  We will label the eigen- 
functions by (p, q )  and specify the index of the dominant coefficient a,. This will fix 
the dominant wavevector k = ( p  + n, q) .  

Nonlinear effects corresponding to h/h > 0 can lead to instability of these modes 
(i.e. complex eigenvalues) if the eigenvalues agree for different n and the same p 
and q in the linear approximation (7), i.e. 

&l(P,q) = U k * ( P J )  (8) 

for some [n,, n,] and choice of the propagation sense. The corresponding eigenvector 
will have dominant components with wavevectors k, = (p + n,, q) and k, = (p + n,, q). 
For gravity waves on deep water, the solution to (8) can be divided into two classes : 
class I 

(9) 1 k, = (P + m, q), k, = (P - m, d,  4XP9 q )  = G , A P ,  
[ ( p  + m),+ q a ] )  + [ ( p  - m)Z + 4214 = 2m ; 

k, = (P + m, q), k, = (1, - m - 1, q), 4 P ,  q)  = Gd?% 91, 

[(p+m)*+q2]if+[(p-m- 1)2+q2]if = 2m+ 1. 

class I1 

} (10) 

In the above, m 2 1. These two classes account for all solutions to (8) apart from the 
degeneracy in the labelling as noted above. The curves described by (9) and (10) are 

to be more convenient to allow for general p .  
t The degeneracy can be removed by restricting p to the range 0 < p < 1, but it  turns out 

11-2 
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FIGURE 1, Resonance curves from tho linear dispersion relation (equation 11) .  
The index N labels the order of the interaction. 

plotted in figure 1. Class I curves are symmetric about the origin, while class I1 curves 
are symmetric about p = 4, q = 0. 

The coincidence of the eigenvalues can alternatively be interpreted as resonance of 
two infinitesimal waves with a ‘ carrier ’ wave. Seen in a fixed frame of reference, the 
resonance condition is 

--2+Nwo, k, = k,+Nk,, 

where k, = (p‘+N,q), k, = (p’,q), k, = ( l , O ) ,  and wi = Iki(i, the linear-dispersion 
relation for gravity waves. Class I corresponds to N even, m = ) N ,  p’ = p - m ;  and 
class I1 corresponds to N odd, m = + ( N -  l),  p’ = p - m -  1. The lowest-order 
resonance, N = 2, is Phillips’ figure 8, and is expected to give rise to the dominant 
instability for small h/h. Higher-order resonances are expected to give rise to additional 
instabilities. t 

Previous analytical studies have been restricted to the lowest-order resonance 
(N = 2). The Benjamin-Feir analysis corresponds to (h /h )  < 1, q = 0, p = O(h/A).  
Stability analysis of the Schrodinger equation in three dimensions (Zakharov 1968) 
extends the result to q =k 0. The Zakharov equation extends these results to larger 
values of h/h (Crawford et al. 1981), but does not contain the higher-order resonances. 

3. Numerical treatment 
The computations consist of two parts, calculation of the unperturbed wave ?j,$ 

and solution of the eigenvalue problem. Accurate solutions for the two-dimensional 
Stokes wave have been obtained by Schwartz (1974), Cokelet (1977), Longuet-Higgins 

t Zakharov (1968) suggests that these resonances lead to growth rates of order ( h / A ) N ,  but 
only shows this for N = 2. 
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(19783), Chen & Saffman (1980), Saffman (1980), and others. For our purposes it 
proved convenient to recalculate the unperturbed wave by solving for x and z as 
functions of the velocity potential $ and the stream function $, as was done by 
Saffman (1980). In these variables, the unperturbed surface is a streamline ($ = 0), 
and is given parametrically by 

(12) x = x($) = $ / c + ~ - n s m c ,  * H, . n$ x = x ( $ )  = Ho -++-cos- " H n  n$ 
2 i n  C '  

It has been shown (Longuet-Higgins 19783) that the free-surface boundary condition 
(Bernoulli equation) can be written as a quadratic equation in the unknowns {H,}: 

Substitution of (12) into ( 1  3) yields t,he system 

This system is truncated at L Fourier modes and solved in double precision by 
Newton's method for each value of the wave steepness. For h/h Q 0.10, L = 100 was 
used, with the last Fourier coefficient less than 10-13 in magnitude. As the steepness 
increases, it is necessary to use more modes to describe adequately the unperturbed 
wave. For the highest wave considered here h/h = 0.1305, L = 300 was used, with the 
last coefficient approximately lo-0 in magnitude. Wave properties such as the wave 
speed have been compared with previous calculations (Cokelet 1977), and the results 
agree to six significant figures. 

Once the unperturbed wave is calculated, we return to Cartesian co-ordinates to 
compute the coefficients in (6). Using the fundamental relations 

and the Cauchy-Riemann condition, we obtain the equations 

($a3 $w $x, $2)  = (x$,z$, 5, z,)/(xj + 3,. (16) 

Higher-order derivatives are obtained by a straightforward application of the chain 
rule. Thederivatives x ~ ,  z ~ ,  x$$, zM.are obtained by term-by-term differentiation of ( 12). 

The perturbations are approximated by truncating ( 5 )  at M Fourier modes. The 
unknown coefficients {an,bn}, n = - M, ..., M are chosen to satisfy (4) at 2M+ 1 
points, spaced in equal arclength increments between adjacent crests of the unper- 
turbed wave. The resulting system of order 4M + 2 is of the form: 

(17)  

where u = {a-A,l.. . a , ,  b-,,I . . . b,} and the matrices A and B are complex functions of 
p ,  q and h/h.  A standard eigenvalue solver (based on the QZ algorithm) is used to find 
the 4M + 2 eigenvalues of the system (17). Attention is focused on those eigenvalues 

(A - VB)U = 0, 
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hlh P q M 
0.064 0.32 b.00 10 

20 

0.111 0.60 0.00 10 
20 
30 

0.1 11 0.60 1.15 10 
20 
30 

0.127 0.50 0.79 20 
30 
40 

0.131 0.50 0.65 30 
40 
46 

0.131 0.50 0.00 30 
40 
45 

90 
- 0.146396 
- 0.146396 

-0.213688 
-0.213878 
- 0.213873 

0*000278 
0*000003. 
0-000000 
0.000439 

- 0*000009 
0.0006 1 5 

-0~000113 
0.010084 

- 0*0005 16 

- 0.000399 
0.015399 

- 0.000386 

9 U  

0.013273 
0.013273 

0.023644 
0.022701 
0.022703 

0.042674 
0.04 1263 
0.04 1268 

0.086369 
0.089338 
0.088408 

0.1 11884 
0.109837 
0.108651 

0.073644 
0.063804 
0.067337 

TABLE 1. Examples of the dependence of the eigenvalues on the truncation. 

P 

l i  \ \ 

1 I I 

0 0.5 1 2 3 

P 
FIQURE 2. Instability regions for m = 1. The dot labels the point of maximum instability. The 
dashed lines are points of neutral stability, labelled by the dominant wavenumber of the eigen- 
function. (a) h/h = 0.032, ( b )  h / h  = 0.064, (c) h/A = 0.095, ( d )  h /h  = 0.111, (e) h/h  = 0.127, 
( f )  h/h  = 0.131. 

which have a non-zero imaginary part. The truncation M is increased until the eigen- 
values have converged. The accuracy of the eigenvalues can be tested by increasing 
M, and by checking that the last components of the corresponding eigenvector are 
sufficiently small. For h/h < 0.10, M = 20 is sufficient to obtain the relevant eigen- 
values to three significant figures. Up to h/h = 0.127, the eigenvalues can accurately 
be obtained using M = 40. For h/h = 0-1305, M = 40 was used and comparisons were 
made with M = 45. For this wave steepness, the quantitative accuracy is poor, but 
qualitative features should be adequately obtained. The dependence of the eigenvalue 
on the truncat,ion is given in table 1. 
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FIQIJRE 2 b, c, d. For legend see p. 320. 
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P 

P 
FIUURE 2e, f. For legend see p. 320. 

As a check of the eigenvalue solver, a non-singular system can be constructed from 
the system (17), with the eigenvalue as an unknown, and using a normalization 
condition as an extra equation. We have the nonlinear system 

(A-cTB)~ = 0, U*U = 1. (18) 

This system of 4N + 3 equations can be solved by Newton’s method using the solution 
from the QZ algorithm as an initial guess of the 4N + 3 unknowns {u, a}. In all cases, 
the Newton method confirmed the accuracy of the eigenvalue solver. 

All computations were performed in double precision (14 digits) on a Prime 750 
minicomputer. For M = 20, the eigenvalues are obtained in about 6 min. For M = 40, 
the eigenvalues of the resulting 162 x 162 complex matrix are obtained in about 
30min, with a substantial amount of that time required for paging through virtual 
memory. 
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h l A  
inf 
0.032 
0.064 
0.095 
0.111 
0.127 
0.131 
0.131 

Class I, m = 1 Class 11, m = 1 

2ka 
0.18 
0.32 
0.47 
0.60 

-ku 
- 0.086 
-0.146 
-0.189 
- 0.214 
Stable 
Stable 
Stable 

t(W3 
4.09 x 
1.33 x 
2.26 x 1 0 - 3  
2-27 x 10-2  

0.5 90 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 

- 3-2(ka)s 
1.64 
1.54 
1.33 
1-15 
0.79 
0-65 
0.00 

0*59(ka)s 
8.00 x lo-' 
6.23 x 
2-15 x lo-' 
4.13 x 10-3 
8.88 x 10-2  
1.1 x 10-1 
6.7 x 

TABLE 2. The maximum growth rate as a function of wave steepness. 
ka = n (h /A) .  Tho first row gives results for h/A 4 1. qo = 3 45. 

I 
I I I I I I 

0 0.05 0.10 

hlh  

FIGURE 3. The transverse wavenumber of the dominant class I1 instability as a function 
of wave steepness. The dashed line on the right represents the highest wave. 

4. Results 
The instability regions corresponding to the first members of the two classes are 

plotted in figure 2 for various values of the wave steepness. The corresponding growth 
rates are given in table 2. For q = 0, p = O(h/A),  the class I, m = 1 instability has a 
growth rate Yfa = O((h/A)2)  for small h/A, in agreement with the perturbation analysis 
of Benjamin t Feir. The instability near p = 9 has a growth rate O((h/h)4) .  For 
larger values of h/h, the unstable region continues to grow until h/h N 0.108, when the 
region detaches from the origin. Beyond this, the region shrinks as h/A increases, 
finally disappearing for h/A N 0.123. Throughout this range of wave steepness, the 
maximum instability is attained for q = 0, so this instability is predominantly two- 
dimensional. Recall that the unstable eigenvector has dominant components at 
kz = p +  1 and kz = p -  1. 

The class 11, m = 1 instability is new. Nearp = 3, q = 0, the growth rate is O((h/A)6) ,  
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( b )  
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FIGURE 4. The unperturbed wave and the eigenfunction corresponding to the most unstable 
disturbance of class I. The middle curve is the unperturbed wave, the lower curve is the eigen- 
function, and the upper curve is the resulting profile. The eigenfunction has been normalized 
so that its crest-to-trough height is 0.3 times the crest-to-trough height of the unperturbed wave. 
Note: the vertical scales have been exaggerated for presentation. (a) h / A  = 0.032; ( b )  h / A  
= 0.064; (c) h/A = 0.095; ( d )  h / h  = 0.111. 

while, near p = 4, q = $45,  the growth rate is O((h/h)3) .  Thus, this instability is 
initially weaker than the class I resonance. The corresponding eigenvector has 
dominant components at k, = p + 1 and k, = p - 2 so, for p = 4, tthe dominant wave- 
number is f #. The maximum growth rate occurs a t  p = +, q + 0, 80 this instability is 
strictly three-dimensional. At h/A  N 0.10, the growth rate of this instability becomes 
larger than the growth rate of the class I instability, and the most unstable disturb- 
ance switches from the two-dimensional Benjamin-Feir type to  this three-dimensional 
perturbation. At h/h N 0.129, the instability region touches t'he p-axis yielding a two- 
dimensional unstable disturbance, which was initially identified by Longuet-Higgins 
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FIGURE 4c, d.  For legend see p. 324. 

( 1 9 7 8 ~ ) .  It should be noted, however, that the strongest disturbance occurs for q =+ 0 
and is three-dimensional; see figure 3. 

The point of maximum instability for the class I1 resonance occurs with L&?c = 0; 
thus the perturbation remains stationary (but increasing in amplitude) in a frame of 
reference moving with the unperturbed wave. In  fact, @C = 0 along the line p = 4 in 
the unstable region, so at  the stability boundary we have c = 0, and the perturbation 
is a neutral disturbance. This suggests the possibility that the unperturbed wave mn 
bifurcate into a steady three-dimensional wave pattern. Indeed, this neutral stability 
point touches the p-axis at hlh = 0.129, in good agreement wit,h the value found by 
Chen & Saffman (1980) for two-dimensional bifurcation of a Stokes wave train. 
Values of p and q corresponding to neutral disturbance have been plotted in figure 2. 

In figure 4, the unperturbed wave, the eigenfunction corresponding to the most 
unstable disturbance, and the resultant profile is plotted for class I ,  m = 1.  Since 
in general p is not rational, these perturbations are not strictly periodic. The 
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FIGURE 5. The perturbed wave corresponding to the most unstable disturbance of class 11. 
The eigenfunction is normalized as in figure 3. (a)  h /h  = 0.064, (b )  h /A  = 0.127. 

hlX 
FIGURE 6. Maximum growth rates form = 1 and m = 2. -, class I, m = 1; - - -, claw 11, 

m = 1; - - -, class I, m = 2; . . . . ., class 11, m = 2. 
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FIGURE 7. Comparison of theory and experiment for h/h = 0.105. (a) Photograph by Su (1951), 
( b )  perturbed wave (theory). The eigenfunction is normalized as in figure 3. 

eigenfunction is arbitrary up to multiplication by a complex number, thus the phase 
and crest-to-trough height is undetermined. Since the class I, m = 1 eigenvalue has 
Wu + 0, the choice of phase corresponds to fixing the origin in time. Figure 4 represents 
the profile a t  one instant in time. The profile will distort as time increases. In  figure 5, 
the situation corresponding to class 11, m = 1, is plotted. Since the maximum disturb- 
ance occurs forp = 4 and has W c  = 0, the perturbation is periodic and moves with the 
unperturbed wave. The disturbance is three-dimensional (q + 0) ; thus the choice of 
phase defines the origin of the y-axis. 

The trends exhibited by m = 1 of classes I and I1 are reflected in the higher-order 
interactions. Form = 2, class I, the maximum growth rate occurs forp = 0, q + 0, and 
has a growth rate Ju = O((h/A)4)  for small values of the wave steepness. For m = 2,  
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0 4n 8n 12n 

\ 
\ 
\ 
\ 

0 \ 
\ 
\ 

-;'I: 0 4n 8n 12* 

FIQURE 8. Comparison of wave profiles of figure 3. Dashed curve is the experimental 
measurement (Su 1981); solid curve is the calculated profile. (a) 2~ = 0, (b )  y = &n. 

class 11, the point of maximum instability occurs a t  p = 4, q + 0 and has an initial 
growth rate of O((h/A)5) .  The maximum instability in these cases occurs with 9 u  = 0. 
For the range of wave heights considered here, 0 < h/h .c 0.1305, the m = 1 inter- 
actions produce the dominant instabilities. Comparison of the growth rates for the 
various instabilities is given in figure 6. 

Based on the results of m = 1 and m = 2, we draw the following conclusions: 
(i) Form = 1 (class I), the strongest instability occurs atp + 0, q = 0. For class I, 

m > I ,  the most unstable disturbance occurs a t p  = 0, q + 0. For class 11, the maximum 
instability occurs at p = 0.5, q + 0. 

(ii) Except for class I, m = 1, the most unstable disturbance occurs with Bu = 0; 
thus the phase is stationary in a frame of reference moving with the unperturbed 
wave. The stability boundary at  p = 0 (class I) or p = 0.5 (class 11) is a point of 
neutral stability u = 0, and may represent a bifurcation into a steady three- 
dimensional wave pattern. 

(iii) In terms ofthe N-foldresonanceinterpretation, w1 = - w, + Noo,  theinstability 
has a maximum growth rate Yu = O((h/h)N)  for small h/A.  
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5. Comparison with observation 
The perturbation analysis of Benjamin & Feir (1967) afforded an explanation of the 

observation that a gravity wave is unstable to two-dimensional perturbations. 
Improvements of the theory based on the nonlinear equations led to good agreement 
with experiment (Longuet-Higgins 1 9 7 8 ~ ) .  It is significant to note that the original 
experiments were for values of the wave steepness h/A < 0,054, a range in which the 
three-dimensional instabilities are quite weak. 

Recent experiments on steep waves have noted the tendency for the wave train to 
disintegrate as a result of three-dimensional perturbat,ions for h/h > 0-08 (Su 1981). 
For the experimental value h/h = 0.105, Su measured the wavelength of the pertur- 
bation to be A, = 2.1 m, hy = 0.915 m, yielding ku/kx = 2-36. At this steepness, the 
present calculation predicts that t'he most unstable disturbance will occur for p = 4, 
q = 1.23, yielding kJk, = 2.46, in good agreement with the experimental value. The 
wave profiles are compared in figure 7 and 8, where the amplitude of the eigenfunct,ion 
(which is undetermined by the linearized equations) has been chosen for the best 
agreement with the experiment,al profile. The numerical calculations yield 3u = 0-031 6, 
but experimental data on the growth rate is presently not available for comparison. 

6. Conclusions 
It has been shown that the coincidence of eigenvalues given by the linear dispersion 

relation leads to instability for finite amplitude. For small wave steepness, the most 
unstable disturbance is two-dimensional while, for steeper waves, the instability is 
predominantly three-dimensional. This result has been used to explain the obser- 
vation that steep waves collapse as a result of three-dimensional perturbations. 

The resonance curves also suggest bhe existence of a family of two-dimensional 
instabilities for p = m2 + 4 (class I) and p = m2 + m + 1 (class 11). Although these insta- 
bilities are weak, it is significant that these superharmonic instabilities are missed by 
conventional WKB analysis (Dagan 1975; Phillips 1981), but are suggested by analogy 
with instabilities of Hill's equation (Hasselmann 1979). This instability is not in 
conflict with the conclusion of Longuet-Higgins that there are no unstable super- 
harmonic disturbances, since these perturbations are not strictly periodic, and are 
thus not allowed by his analysis. 

The possibility of further instability regions which do not exist for small hlh cannot 
be excluded, but we have found no evidence of additional instabilities. 

We have also identified some neutral disturbances (a = 0), which are possible 
bifurcations of the two-dimensional wave train. Recent investigations have obtained 
t,wo-dimensional bifurcations of the Stokes wave (Chen & Saffman 1979), and three- 
dimensional bifurcations in the Zakharov equation (Saffman & Yuen 1980). A study 
is presently under way on three-dimensional bifurcations based on the full nonlinear 
equations. 

The author wishes to thank Dr M. Y. Su for permission to use his photograph, and 
Professor P. G. Saffman and Dr H. C. Yuen for many valuable comments and sug- 
gestions during the course of the research and preparation of the manuscript. 
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